Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 587
1.
Cancer Cell Int ; 24(1): 164, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730293

Kidney Clear Cell Carcinoma (KIRC), the predominant form of kidney cancer, exhibits a diverse therapeutic response to Immune Checkpoint Inhibitors (ICIs), highlighting the need for predictive models of ICI efficacy. Our study has constructed a prognostic model based on 13 types of Programmed Cell Death (PCD), which are intertwined with tumor progression and the immune microenvironment. Validated by analyses of comprehensive datasets, this model identifies seven key PCD genes that delineate two subtypes with distinct immune profiles and sensitivities to anti-PD-1 therapy. The high-PCD group demonstrates a more immune-suppressive environment, while the low-PCD group shows better responses to PD-1 treatment. In particular, TOP2A emerged as crucial, with its inhibition markedly reducing KIRC cell growth and mobility. These findings underscore the relevance of PCDs in predicting KIRC outcomes and immunotherapy response, with implications for enhancing clinical decision-making.

2.
Gut Microbes ; 16(1): 2351532, 2024.
Article En | MEDLINE | ID: mdl-38727248

Emerging evidence indicates that alteration of gut microbiota plays an important role in chronic kidney disease (CKD)-related vascular calcification (VC). We aimed to investigate the specific gut microbiota and the underlying mechanism involved in CKD-VC. We identified an increased abundance of Prevotella copri (P. copri) in the feces of CKD rats (induced by using 5/6 nephrectomy followed by a high calcium and phosphate diet) with aortic calcification via amplicon sequencing of 16S rRNA genes. In patients with CKD, we further confirmed a positive correlation between abundance of P. copri and aortic calcification scores. Moreover, oral administration of live P. copri aggravated CKD-related VC and osteogenic differentiation of vascular smooth muscle cells in vivo, accompanied by intestinal destruction, enhanced expression of Toll-like receptor-4 (TLR4), and elevated lipopolysaccharide (LPS) levels. In vitro and ex vivo experiments consistently demonstrated that P. copri-derived LPS (Pc-LPS) accelerated high phosphate-induced VC and VSMC osteogenic differentiation. Mechanistically, Pc-LPS bound to TLR4, then activated the nuclear factor κB (NF-κB) and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome signals during VC. Inhibition of NF-κB reduced NLRP3 inflammasome and attenuated Pc-LPS-induced VSMC calcification. Our study clarifies a novel role of P. copri in CKD-related VC, by the mechanisms involving increased inflammation-regulating metabolites including Pc-LPS, and activation of the NF-κB/NLRP3 signaling pathway. These findings highlight P. copri and its-derived LPS as potential therapeutic targets for VC in CKD.


Gastrointestinal Microbiome , Lipopolysaccharides , NF-kappa B , Prevotella , Renal Insufficiency, Chronic , Signal Transduction , Toll-Like Receptor 4 , Vascular Calcification , Animals , Vascular Calcification/metabolism , Vascular Calcification/pathology , NF-kappa B/metabolism , Lipopolysaccharides/metabolism , Rats , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/microbiology , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/pathology , Humans , Male , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Prevotella/metabolism , Rats, Sprague-Dawley , Myocytes, Smooth Muscle/metabolism , Osteogenesis/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Feces/microbiology , Inflammasomes/metabolism
3.
Phytomedicine ; 129: 155595, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38677275

BACKGROUND: The potential therapeutic targeting of PINK1-PARK2-mediated mitophagy against cerebral ischemia/reperfusion (CI/R) injury involves the pathophysiological processes of neurovascular unit (NVU) and is closely associated with N-methyl-D-aspartate receptors (NMDARs) commonly expressed in NVU. 2,3,5,4'-Tetrahydroxy-stilbene-2-O-ß-D-glucoside (THSG), a compound derived from the traditional Chinese medicine Polygonum multiflorum Thunb., has demonstrated notable neuroprotective properties against CI/R injury. However, it remains unclear whether THSG exerts its protective effects through GluN2B related PINK1/ PARK2 pathway. PURPOSE: This study aims to explore the pharmacological effects of THSG on alleviating CI/R injury via the GluN2B-CaMKII-ERK1/2 pathway. METHODS: THSG neuroprotection against CI/R injury was studied in transient middle cerebral artery occlusion/reversion (tMCAO/R) model rats and in oxygen and glucose deprivation/ reoxygenation (OGD/R) induced neurons. PINK1-PARK2-mediated mitophagy involvement in the protective effect of THSG was investigated in tMCAO/R rats and OGD/R-induced neurons via THSG and 3-methyladenine (3-MA) treatment. Furthermore, the beneficial role of GluN2B in reperfusion and its contribution to the THSG effect via CaMKII-ERK1/2 and PINK1-PARK2-mediated mitophagy was explored using the GluN2B-selective antagonist Ro 25-6981 both in vivo and in vitro. Finally, the interaction between THSG and GluN2B was evaluated using molecular docking. RESULTS: THSG significantly reduced infarct volume, neurological deficits, penumbral neuron structure, and functional damage, upregulated the inhibitory apoptotic marker Bcl-2, and suppressed the increase of pro-apoptotic proteins including cleaved caspase-3 and Bax in tMCAO/R rats. THSG (1 µM) markedly improved the neuronal survival under OGD/R conditions. Furthermore, THSG promoted PINK1 and PARK2 expression and increased mitophagosome numbers and LC3-II-LC3-I ratio both in vivo and in vitro. The effects of THSG were considerably abrogated by the mitophagy inhibitor 3-MA in OGD/R-induced neurons. Inhibiting GluN2B profoundly decreased mitophagosome numbers and OGD/R-induced neuronal viability. Specifically, inhibiting GluN2B abolished the protection of THSG against CI/R injury and reversed the upregulation of PINK1-PARK2-mediated mitophagy by THSG. Inhibiting GluN2B eliminated THSG upregulation of ERK1/2 and CaMKII phosphorylation. The molecular docking analysis results demonstrated that THSG bound to GluN2B (binding energy: -5.2 ± 0.11 kcal/mol). CONCLUSIONS: This study validates the premise that THSG alleviates CI/R injury by promoting GluN2B expression, activating CaMKII and ERK1/2, and subsequently enhancing PINK1-PARK2-mediated mitophagy. This work enlightens the potential of THSG as a promising candidate for novel therapeutic strategies for treating ischemic stroke.

4.
Pancreatology ; 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38637233

BACKGROUND: Store-operated Ca2+ entry (SOCE) mediated by ORAI1 channel plays a crucial role in acute pancreatitis (AP). Macrophage is an important regulator in amplifying pancreatic tissue damage, but little is known about the role of ORAI1 in macrophages. In this study, we examined the effects of macrophage-specific ORAI1 on pancreatic tissue damage in AP. METHOD: Myeloid-specific Orai1 deficient mice was generated by crossing a LysM-Cre mouse line with Orai1f/f mice. Bone marrow-derived macrophages (BMDMs) were isolated, cultured, and stimulated to induce M1 or M2 macrophage polarization. Intracellular Ca2+ signals were measured by time-lapse confocal microscope imaging, with a Ca2+ indicator (Fluo 4). Experimental AP was induced by hourly intraperitoneal injections of caerulein or retrograde biliopancreatic infusion of sodium taurocholate. Pancreatic tissue damage was assessed by histopathological scoring and immunostaining. Sepsis was induced by intraperitoneal injection of lipopolysaccharide; organ damage and serum pro-inflammatory cytokines were measured. RESULT: Myeloid-specific Orai1 deletion exhibited minimal effect on SOCE in M0 macrophages and promoted M2 macrophage polarization ex vivo. Myeloid-specific Orai1 deletion did not affect pancreatic tissue damage, nor neutrophil or macrophage infiltration in two models of AP. Similarly, myeloid-specific Orai1 deletion did not influence overall survival rate in a model of sepsis, nor lung, kidney, and liver damage; while serum pro-inflammatory cytokines, including IL-6, TNF-α, and IL-1ß were higher in Orai1ΔLysM mice, but were largely reduced in mice with Orai1 inhibitor. CONCLUSION: Our data suggest that ORAI1 may not be a predominant SOCE channel in macrophages and play a limited role in mediating pancreatic tissue damage in AP.

5.
Chem Commun (Camb) ; 60(36): 4822-4825, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38616724

In this study, a novel electrocatalyst, namely Cu/N-pg-C derived from Cu-doped ZIF-8, was investigated for making syngas products with various H2/CO ratios. Different ratios of the electrocatalytic syngas products CO and H2 could be selected by adjusting the applied potential and hence tuning the transfer of electrons from N-doped graphitic carbon to the well-dispersed Cu nanoclusters.

6.
Health Inf Sci Syst ; 12(1): 29, 2024 Dec.
Article En | MEDLINE | ID: mdl-38584761

Purpose: To explore the biliary and duodenal microbiota features associated with the formation and recurrence of choledocholithiasis (CDL). Methods: We prospectively recruited patients with primary (P-CDL, n = 29) and recurrent CDL (R-CDL, n = 27) for endoscopic retrograde cholangiopancreatography (ERCP). Duodenal mucosa (DM), bile and bile duct stones (BDS) samples were collected in P- and R-CDL patients. DM samples were also collected in 8 healthy controls (HC). The microbiota profile analysis was performed with 16S rRNA gene sequencing. Results: Short-course antibiotic application before ERCP showed no significant effects in alpha and beta diversities of the biliary and duodenal microbiota in CDL. Alpha diversity showed no difference between DM and bile samples in CDL. The duodenal microbial richness and diversity was lower in both P- and R-CDL than HC. The biliary microbiota composition showed a high similarity between P- and R-CDL. Fusobacterium and Enterococcus were higher abundant in DM, bile, and BDS samples of R-CDL than P-CDL, as well as Escherichia and Klebsiella in bile samples of R-CDL. The enriched duodenal and biliary bacteria in CDL were closely associated with cholecystectomy, inflammation and liver dysfunction. The bile-associated microbiota of R-CDL expressed enhanced capacity of D-glucuronide and D-glucuronate degradation, implicating an elevated level of ß-glucuronidase probably produced by enriched Escherichia and Klebsiella in bile. Conclusions: The duodenal microbiota was in an imbalance in CDL. The duodenal microbiota was probably the main source of the biliary microbiota and was closely related to CDL formation and recurrence. Enterococcus, Fusobacterium, Escherichia and Klebsiella might contribute to CDL recurrence. Clinical trials: The study was registered at the Chinese Clinical Trial Registry (https://www.chictr.org.cn/index.html, ChiCTR2000033940). Supplementary Information: The online version contains supplementary material available at 10.1007/s13755-023-00267-2.

7.
FASEB J ; 38(7): e23592, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38581243

Vascular calcification is an actively regulated biological process resembling bone formation, and osteogenic differentiation of vascular smooth muscle cells (VSMCs) plays a crucial role in this process. 1-Palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC), an oxidized phospholipid, is found in atherosclerotic plaques and has been shown to induce oxidative stress. However, the effects of POVPC on osteogenic differentiation and calcification of VSMCs have yet to be studied. In the present study, we investigated the role of POVPC in vascular calcification using in vitro and ex vivo models. POVPC increased mineralization of VSMCs and arterial rings, as shown by alizarin red staining. In addition, POVPC treatment increased expression of osteogenic markers Runx2 and BMP2, indicating that POVPC promotes osteogenic transition of VSMCs. Moreover, POVPC increased oxidative stress and impaired mitochondria function of VSMCs, as shown by increased ROS levels, impairment of mitochondrial membrane potential, and decreased ATP levels. Notably, ferroptosis triggered by POVPC was confirmed by increased levels of intracellular ROS, lipid ROS, and MDA, which were decreased by ferrostatin-1, a ferroptosis inhibitor. Furthermore, ferrostatin-1 attenuated POVPC-induced calcification of VSMCs. Taken together, our study for the first time demonstrates that POVPC promotes vascular calcification via activation of VSMC ferroptosis. Reducing the levels of POVPC or inhibiting ferroptosis might provide a novel strategy to treat vascular calcification.


Cyclohexylamines , Ferroptosis , Phenylenediamines , Vascular Calcification , Humans , Muscle, Smooth, Vascular/metabolism , Phospholipids/metabolism , Phosphorylcholine/metabolism , Reactive Oxygen Species/metabolism , Osteogenesis , Vascular Calcification/metabolism , Myocytes, Smooth Muscle/metabolism , Cells, Cultured
8.
Biomimetics (Basel) ; 9(3)2024 Feb 21.
Article En | MEDLINE | ID: mdl-38534817

In recent years, both domestic and international research on quadruped robots has advanced towards high dynamics and agility, with a focus on high-speed locomotion as a representative motion in high-dynamic activities. Quadruped animals like cheetahs exhibit high-speed running capabilities, attributed to the indispensable role played by their flexible spines during the flight phase motion. This paper establishes dynamic models of flexible spinal quadruped robots with different degrees of simplification, providing a parameterized description of the flight phase motion for both rigid-trunk and flexible-spine quadruped robots. By setting different initial values for the spine joint and calculating the flight phase results for both types of robots at various initial velocities, the study compares and analyzes the impact of a flexible spine on the flight phase motion of quadruped robots. Through comparative experiments, the research aims to validate the influence of a flexible spine during the flight phase motion, providing insights into how spine flexibility affects the flight phase motion of quadruped robots.

9.
J Nucl Med ; 65(5): 775-780, 2024 May 01.
Article En | MEDLINE | ID: mdl-38548349

Tissue-resident macrophages are complementary to proinflammatory macrophages to promote the progression of atherosclerosis. The noninvasive detection of their presence and dynamic variation will be important to the understanding of their role in the pathogenesis of atherosclerosis. The goal of this study was to develop a targeted PET radiotracer for imaging CD163-positive (CD163+) macrophages in multiple mouse atherosclerosis models and assess the potential of CD163 as a biomarker for atherosclerosis in humans. Methods: CD163-binding peptide was identified using phage display and conjugated with a NODAGA chelator for 64Cu radiolabeling ([64Cu]Cu-ICT-01). CD163-overexpressing U87 cells were used to measure the binding affinity of [64Cu]Cu-ICT-01. Biodistribution studies were performed on wild-type C57BL/6 mice at multiple time points after tail vein injection. The sensitivity and specificity of [64Cu]Cu-ICT-01 in imaging CD163+ macrophages upregulated on the surface of atherosclerotic plaques were assessed in multiple mouse atherosclerosis models. Immunostaining, flow cytometry, and single-cell RNA sequencing were performed to characterize the expression of CD163 on tissue-resident macrophages. Human carotid atherosclerotic plaques were used to measure the expression of CD163+ resident macrophages and test the binding specificity of [64Cu]Cu-ICT-01. Results: [64Cu]Cu-ICT-01 showed high binding affinity to U87 cells. The biodistribution study showed rapid blood and renal clearance with low retention in all major organs at 1, 2, and 4 h after injection. In an ApoE-/- mouse model, [64Cu]Cu-ICT-01 demonstrated sensitive and specific detection of CD163+ macrophages and capability for tracking the progression of atherosclerotic lesions; these findings were further confirmed in Ldlr-/- and PCSK9 mouse models. Immunostaining showed elevated expression of CD163+ macrophages across the plaques. Flow cytometry and single-cell RNA sequencing confirmed the specific expression of CD163 on tissue-resident macrophages. Human tissue characterization demonstrated high expression of CD163+ macrophages on atherosclerotic lesions, and ex vivo autoradiography revealed specific binding of [64Cu]Cu-ICT-01 to human CD163. Conclusion: This work reported the development of a PET radiotracer binding CD163+ macrophages. The elevated expression of CD163+ resident macrophages on human plaques indicated the potential of CD163 as a biomarker for vulnerable plaques. The sensitivity and specificity of [64Cu]Cu-ICT-01 in imaging CD163+ macrophages warrant further investigation in translational settings.


Antigens, CD , Antigens, Differentiation, Myelomonocytic , Atherosclerosis , Macrophages , Positron-Emission Tomography , Receptors, Cell Surface , Animals , Mice , Positron-Emission Tomography/methods , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, CD/metabolism , Atherosclerosis/diagnostic imaging , Atherosclerosis/metabolism , Macrophages/metabolism , Receptors, Cell Surface/metabolism , Humans , Mice, Inbred C57BL , Copper Radioisotopes , Tissue Distribution , Radiopharmaceuticals/pharmacokinetics
10.
Heliyon ; 10(3): e25236, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38322848

Various assessments have contributed to inconsistent findings regarding the correlation between core stability and vertical jumps. Therefore, this study aimed to re-examine this correlation based on novel core stability assessments. Twenty-one recreationally active male college students (age, 21.7 ± 2.1 years; stature, 174.9 ± 6.7 cm; body mass, 67.7 ± 7.8 kg; leg length, 88.9 ± 4.8 cm; arm length, 87.8 ± 4.0 cm) participated in this experiment. Core stability was divided into static and dynamic core stabilities, with the static core stability measured using the Eight-Level Prone Bridge and Five-Level Side Bridge tests and the dynamic core stability measured using the Y Balance Test (YBT). These tests comprehensively evaluate core stability as it is defined. Kinematic and kinetic data on vertical jumps were collected to provide process information beyond the outcome performance. Subsequently, these data were correlated with core stability for a deeper insight into the relationship between core stability and the process and outcome performance of vertical jumps. The main results revealed that the Eight-Level Prone Bridge demonstrated moderate to substantial correlations with Δ Fy‾, Δ Iy, ΔDleftkneez, and ΔDleftankley (-0.62 ≤ r ≤ 0.52); the Five-Level Side Bridge exhibited moderate correlations with Δ Fx‾, Δ Fy‾, Δ Ix, Δ Iy, ΔDleftkneez, and ΔDleftankley (-0.52 ≤ r ≤ 0.59); YBT displayed moderate correlations with Fz‾, Fleftz‾, Δ Dleftankley, Δ Drightankley, Δ Dleftanklez, Δ Drightanklez, NΔ Tankley‾, and N Tleftanklez‾ (-0.54 ≤ r ≤ 0.54) during the propulsive phase of vertical jumps. However, no significant correlations were observed between static/dynamic core stability and jumping height. Therefore, individuals with greater core stability should experience improved process performance (better movement quality), although this benefit is ineffective in translating into jumping height improvement due to impaired explosive features. Coaches may consider core stability in training to trigger an improved process performance of the vertical jump when the technique is the key issue to be solved, although future studies are required to verify this further.

11.
Nucl Med Biol ; 130-131: 108893, 2024.
Article En | MEDLINE | ID: mdl-38422918

Atherosclerosis is a chronic inflammatory disease and the leading cause of morbidity and mortality worldwide. CC motif chemokine ligand 2 and its corresponding cognate receptor 2 (CCL2/CCR2) signaling has been implicated in regulating monocyte recruitment and macrophage polarization during inflammatory responses that plays a pivotal role in atherosclerosis initiation and progression. In this study, we report the design and synthesis of a novel 18F radiolabeled small molecule radiotracer for CCR2-targeted positron emission tomography (PET) imaging in atherosclerosis. The binding affinity of this radiotracer to CCR2 was evaluated via in vitro binding assay using CCR2+ membrane and cells. Ex vivo biodistribution was carried out in wild type mice to assess radiotracer pharmacokinetics. CCR2 targeted PET imaging of plaques was performed in two murine atherosclerotic models. The sensitive detection of atherosclerotic lesions highlighted the potential of this radiotracer for CCR2 targeted PET and warranted further optimization.


Atherosclerosis , Mice , Animals , Tissue Distribution , Atherosclerosis/metabolism , Positron-Emission Tomography/methods , Monocytes , Radiopharmaceuticals/pharmacokinetics , Mice, Inbred C57BL
12.
Histol Histopathol ; : 18715, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38343355

OBJECTIVES: Multispectral imaging (MSI) has been utilized to predict the prognosis of colorectal cancer (CRC) patients, however, our understanding of the prognostic value of nuclear morphological parameters of bright-field MSI in CRC is still limited. This study was designed to compare the efficiency of MSI and standard red-green-blue (RGB) images in predicting the prognosis of CRC. METHODS: We compared the efficiency of MS and conventional RGB images on the quantitative assessment of hematoxylin-eosin (HE) stained histopathology images. A pipeline was developed using a pixel-wise support vector machine (SVM) classifier for gland-stroma segmentation, and a marker-controlled watershed algorithm was used for nuclei segmentation. The correlation between extracted morphological parameters and the five-year disease-free survival (5-DFS) was analyzed. RESULTS: Forty-seven nuclear morphological parameters were extracted in total. Based on Kaplan-Meier analysis, eight features derived from MS images and seven featured derived from RGB images were significantly associated with 5-DFS, respectively. Compared with RGB images, MSI showed higher accuracy, precision, and Dice index in nuclei segmentation. Multivariate analysis indicated that both integrated parameters 1 (factors negatively correlated with CRC prognosis including nuclear number, circularity, eccentricity, major axis length) and 2 (factors positively correlated with CRC prognosis including nuclear average area, area perimeter, total area/total perimeter ratio, average area/perimeter ratio) in MS images were independent prognostic factors of 5-DFS, in contrast with only integrated parameter 1 (P<0.001) in RGB images. More importantly, the quantification of HE-stained MS images displayed higher accuracy in predicting 5-DFS compared with RGB images (76.9% vs 70.9%). CONCLUSIONS: Quantitative evaluation of HE-stained MS images could yield more information and better predictive performance for CRC prognosis than conventional RGB images, thereby contributing to precision oncology.

13.
Animals (Basel) ; 14(4)2024 Feb 15.
Article En | MEDLINE | ID: mdl-38396591

The raccoon dog (Nyctereutes procyonoides) is a typical omnivore possessing wide dietary adaptability and tolerance to rough feeding, which may be attributed to its intestinal microbiota. The study aimed to investigate the effect of dietary alfalfa meal levels on the growth performance, nutrient apparent digestibility, serum parameters, and intestinal microbiota of raccoon dogs. Sixty raccoon dogs were randomly divided into four dietary treatments containing 0% (AM0), 5% (AM5), 10% (AM10), and 15% (AM15) alfalfa meal for a 60-day experiment. The results showed that compared to raccoon dogs fed the AM0 diet, those fed the AM5 and AM10 diets had no significant difference in growth performance, while those fed the AM15 diet experienced a significant decrease. Raccoon dogs fed the AM5 diet had no significant effect on the nutrient apparent digestibility. Dietary supplementation with alfalfa meal significantly decreased serum urea levels and increased the antioxidant capacity of raccoon dogs. The intestinal microbiome analysis showed that the richness and diversity of colonic microbiota significantly increased in the AM15 group. With the increase in dietary alfalfa meal levels, the relative abundance of fiber-degrading bacteria in the colon of raccoon dogs, such as Treponema, Phascolarctobacterium, and Christensenellaceae R-7 group, increased. However, the relative abundance of pathogenic bacteria, including Anaerobiospirillum, decreased. In conclusion, the inclusion of 5% alfalfa meal in the raccoon dogs' diet had no effect on growth performance, but it exhibited the potential to improve serum antioxidant capacity and intestinal microbiota. This indicates that raccoon dogs have a certain tolerance to the addition of alfalfa meal in their diet.

14.
J Control Release ; 367: 13-26, 2024 Mar.
Article En | MEDLINE | ID: mdl-38244843

The cGAS-STING pathway and the Mevalonate Pathway are druggable targets for vaccine adjuvant discovery. Manganese (Mn) and bisphosphonates are known to exert adjuvant effects by targeting these two pathways, respectively. This study found the synergistic potential of the two pathways in enhancing immune response. Risedronate (Ris) significantly amplified the Mn adjuvant early antibody response by 166-fold and fortified its cellular immunity. However, direct combination of Mn2+ and Ris resulted in increased adjuvant toxicity (40% mouse mortality). By the combination of doping property of hydroxyapatite (HA) and its high affinity for Ris, we designed Ris-functionalized Mn-HA micro-nanoparticles as an organic-inorganic hybrid adjuvant, named MnHARis. MnHARis alleviated adjuvant toxicity (100% vs. 60% survival rate) and exhibited good long-term stability. When formulated with the varicella-zoster virus glycoprotein E (gE) antigen, MnHARis triggered a 274.3-fold increase in IgG titers and a 61.3-fold surge in neutralization titers while maintaining a better long-term humoral immunity compared to the aluminum adjuvant. Its efficacy spanned other antigens, including ovalbumin, HPV18 VLP, and SARS-CoV-2 spike protein. Notably, the cellular immunity elicited by the group of gE + MnHARis was comparable to the renowned Shingrix®. Moreover, intratumoral co-administration with an anti-trophoblast cell surface antigen 2 nanobody revealed synergistic antitumor capabilities. These findings underscore the potential of MnHARis as a potent adjuvant for augmenting vaccine immune responses and improving cancer immunotherapy outcomes.


Manganese , Neoplasms , Spike Glycoprotein, Coronavirus , Mice , Humans , Animals , Risedronic Acid , Durapatite , Adjuvants, Immunologic , Vaccines, Subunit , Antigens , Adjuvants, Pharmaceutic , Immunotherapy , Antibodies, Viral
15.
Sensors (Basel) ; 24(2)2024 Jan 17.
Article En | MEDLINE | ID: mdl-38257697

Background: The aim of this study was to investigate the effects of different pressurization modes during high-load bench press training on muscle activation and subjective fatigue in bodybuilders. Methods: Ten bodybuilders participated in a randomized, self-controlled crossover experimental design, performing bench press training under three different pressurization modes: T1 (low pressure, high resistance), T2 (high pressure, high resistance), and C (non-pressurized conventional). Surface EMG signals were recorded from the pectoralis major, deltoid, and triceps muscles using a Delsys Trigno wireless surface EMG during bench presses. Subjective fatigue was assessed immediately after the training session. Results: (1) Pectoralis major muscle: The muscle activation degree of the T1 group was significantly higher than that of the blank control group during the bench press (p < 0.05). The muscle activation degree of the T2 group was significantly higher than that of the C group during the bench press (p < 0.05). In addition, the muscle activation degree of the T2 group was significantly higher than that of the T1 group during the first group bench press (p < 0.05). (2) Deltoid muscle: The muscle activation degree of the T2 group during the third group bench press was significantly lower than the index values of the first two groups (p < 0.05). The muscle activation degree in the experimental group was significantly higher than that in the C group (p < 0.05). The degree of muscle activation in the T2 group was significantly higher than that in the T1 group during the first bench press (p < 0.05). (3) Triceps: The muscle activation degree of the T1 group was significantly higher than the index value of the third group during the second group bench press (p < 0.05), while the muscle activation degree of the T2 group was significantly lower than the index value of the first two groups during the third group bench press (p < 0.05). The degree of muscle activation in all experimental groups was significantly higher than that in group C (p < 0.05). (5) RPE index values in all groups were significantly increased (p < 0.05). The RPE value of the T1 group was significantly higher than that of the C group after bench press (p < 0.05). The RPE value of the T1 group was significantly higher than that of the C group after bench press (p < 0.05). In the third group, the RPE value of the T1 group was significantly higher than that of the C and T2 groups (p = 0.002) (p < 0.05). Conclusions: The activation of the pectoralis major, triceps brachii, and deltoid muscles is significantly increased by high-intensity bench press training with either continuous or intermittent pressurization. However, continuous pressurization results in a higher level of perceived fatigue. The training mode involving high pressure and high resistance without pressurization during sets but with 180 mmHg occlusion pressure and pressurization during rest intervals yields the most pronounced overall effect on muscle activation.


Pectoralis Muscles , Upper Extremity , Humans , Electromyography , Exercise Therapy , Fatigue
16.
Small ; 20(14): e2307999, 2024 Apr.
Article En | MEDLINE | ID: mdl-37972271

Zn-air battery (ZAB) is advocated as a more viable option in the new-energy technology. However, the limited-output capacity at a high current density impedes the driving range in power batteries substantially. Here, a novel heterojunction-based graphdiyne (GDY) and Ag29Cu7 alloy quantum dots (Ag29Cu7 QDs/GDY) for constructing a high-performance aqueous ZAB are fabricated. The as-fabricated ZAB achieves discharge at up to 100 mA cm-2 (the highest value ever reported) along with a remarkable output specific capacity of 786.2 mAh g-1 Zn, which is mainly benefitted from the binary-synergistic effect toward a stable triple-phase interface for air electrode induced by the Ag29Cu7 QDs and GDY in harsh base, together with the decreasing reaction energy barrier and polarization. The results outperform the superior reports discharging at low current and will bring breakthrough progress toward the practical applications of ZAB on large power supply facilities.

17.
Chem Biol Interact ; 387: 110806, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-37980972

Cyclophosphamide (CTX), a widely used chemotherapeutic agent for cancer treatment, has been associated with long-term toxicity and detrimental effects on oocytes and ovaries, resulting in female reproductive dysfunction. This study aimed to investigate the potential impact of CTX on in vitro maturation (IVM) injury of porcine oocytes and subsequent embryonic development, as well as its effects on epigenetic modification and gene activation during early embryonic development. The results demonstrated that CTX treatment caused aberrant spindle structure and mitochondrial dysfunction during oocyte maturation, inducing DNA damage and early apoptosis, which consequently disrupted meiotic maturation. Indeed, CTX significantly reduced the in vitro developmental capacity of porcine embryos, and induced DNA damage and apoptosis in in vitro fertilization (IVF) blastocysts. Importantly, CTX induced abnormal histone modification of AcH4K12 in early porcine embryos. Moreover, addition of LBH589 before zygotic genome activation (ZGA) effectively increased AcH4K12 levels and restored the protein expression of NF-κB, which can effectively enhance the in vitro developmental potential of IVF embryos. The DNA damage and apoptosis induced by CTX compromised the quality of the blastocysts, which were recovered by supplementation with LBH589. This restoration was accompanied by down-regulation of BAX mRNA expression and up-regulation of BCL2, POU5F1, SOX2 and SOD1 mRNA expression. These findings indicated that CTX caused abnormal histone modification of AcH4K12 in early porcine embryos and reduced the protein expression of NF-κB, a key regulator of early embryo development, which may block subsequent ZGA processes.


In Vitro Oocyte Maturation Techniques , NF-kappa B , Pregnancy , Female , Swine , Animals , In Vitro Oocyte Maturation Techniques/methods , Panobinostat/pharmacology , Embryonic Development , Cyclophosphamide/pharmacology , RNA, Messenger
19.
BMC Pulm Med ; 23(1): 479, 2023 Nov 29.
Article En | MEDLINE | ID: mdl-38031002

BACKGROUND: Numerous studies have demonstrated the potential of pirfenidone to enhance the prognosis of patients afflicted with idiopathic pulmonary fibrosis (IPF). Although N-acetylcysteine (NAC) is utilized as an antioxidant in IPF treatment, the combination of NAC and pirfenidone has produced inconsistent outcomes in certain studies. To assess the clinical effectiveness and safety of NAC plus pirfenidone (designated as the treatment group) versus pirfenidone monotherapy (designated as the control group), we conducted a systematic review and meta-analysis of randomized controlled trials (RCTs). METHODS: RCTs of NAC plus pirfenidone were reviewed searching from databases and networks of unpublished and published studies in any language. Using pair-wise meta-analysis, changes in pulmonary function test (PFT) parameters and safety were evaluated. RESULTS: Two independent reviewers selected and obtained data from 5 RCTs (n = 398), comprising 1 study from Japan, 1 from Europe, and 3 from China. NAS plus pirfenidone as compared to pirfenidone monotherapy for IPF may not reduce the incidence of skin effects(RR 1.26 [95%CI 0.64 to 2.45]) and mortality(RR 0.35 [95%CI 0.07 to 1.68])(both moderate certainty). NAS plus pirfenidone as compared to pirfenidone monotherapy for IPF may not reduce the incidence of at least one side effects(RR 1.00 [95%CI 0.84 to 1.19]; low certainty),severe side effects(RR 0.67 [95%CI 0.30 to 1.47]; low certainty) and gastrointestinal effects(RR 0.67 [95%CI 0.41 to 1.09]; low certainty) with possibly no effect in Δ%DLco(SMD -0.17 [95%CI -0.15 to 0.48]; low certainty). Meanwhile, the effect of NAS plus pirfenidone as compared to pirfenidone monotherapy on ΔFVC(SMD 0.18 [95%CI -0.68 to 1.05]), Δ%FVC(SMD -2.62 [95%CI -5.82 to 0.59]) and Δ6MWT(SMD -0.35 [95%CI -0.98 to 0.28]) is uncertain(extremely low certainty). CONCLUSION: Moderate certainty evidence suggests that NAS plus pirfenidone, compared to pirfenidone monotherapy for IPF, does not reduce the incidence of skin effects and mortality.


Acetylcysteine , Idiopathic Pulmonary Fibrosis , Humans , Acetylcysteine/therapeutic use , Pyridones/adverse effects , Treatment Outcome
20.
PLoS One ; 18(11): e0294509, 2023.
Article En | MEDLINE | ID: mdl-37983216

This systematic review aimed to evaluate the reliability and validity of the two-point method in predicting 1RM compared to the direct method, as well as analyze the factors influencing its accuracy. A comprehensive search of PubMed, Web of Science, Scopus, and SPORTDiscus databases was conducted. Out of the 88 initially identified studies, 16 were selected for full review, and their outcome measures were analyzed. The findings of this review indicated that the two-point method slightly overestimated 1RM (effect size = 0.203 [95%CI: 0.132, 0.275]; P < 0.001); It showed that test-retest reliability was excellent as long as the test loads were chosen reasonably (Large difference between two test loads). However, the reliability of the two-point method needs to be further verified because only three studies have tested its reliability. Factors such as exercise selection, velocity measurement device, and selection of test loads were found to influence the accuracy of predicting 1RM using the two-point method. Additionally, the choice of velocity variable, 1RM determination method, velocity feedback, and state of fatigue were identified as potential influence factors. These results provide valuable insights for practitioners in resistance training and offer directions for future research on the two-point method.


Muscle Strength , Resistance Training , Humans , Reproducibility of Results , Weight Lifting , Resistance Training/methods , Bibliometrics
...